Culvert

Culverts
There are a number of arrangements for culverts in waterways as shown in Figure 1.1.

Figure 1.1: Culvert Arrangements

Box Culvert with Ford

Box culvert without Ford

Pipe Culvert with Ford
1.2 Potential Waterway Impacts

Impacts of culvert crossings can include:

- Alteration to the natural flow pattern and hydraulic capacity of the stream;
- Increase in erosion due to concentration of flow;
- Increased risk of blockage or damage due to debris;
- Reduced capacity for aquatic fauna movement;
- Reduction in flora and fauna habitat in the vicinity of the crossing;
- Increased extent of flooding upstream;
- Increased sediment and nutrient load input during construction and use.

The assessment criteria for culverts are described below in Section 1.3.

1.3 Assessment Criteria

Track Height

Culvert crossings can be set with the track level at, or above the top of bank, or some lower level depending on the acceptable frequency of track overtopping by the owner.

A low level crossing will generally be the most cost effective for the majority of farming operations. This type of structure will normally have no significant impacts on the hydraulic capacity of the stream provided, the top of the track is approximately 50% less than the depth of the stream channel for shallow streams less than 2 metres. For deeper streams, height will be assessed on it’s merits and may require hydraulic assessment.

For dairy farms, the crossing should be above natural surface so animal wastes are drained away from the waterway.

Culvert Type and Width

Generally box culverts should be used in the Class 2 streams (see Table 1.3). Pipe culverts may be considered for class 3 and 4 streams. Note: a combination of box and pipe culverts could be considered to provide additional waterway area if requested.

For pipe culverts on Class 3 and 4 streams, the total pipe diameter should be equal to the base of the stream bed width.

For Class 2 streams as shown in Table 1.3 the recommended width of the box culverts across the bed is 75% of the typical stream bed width. A narrower width of 50% may be acceptable for Class 3 and 4 streams.

This approach ensures close to natural stream velocities are maintained for aquatic fauna and minimises potential bed erosion. Where the proposal does not meet this criterion, a wider structure will be a condition of approval.

Invert Level
The invert of at least one of the culverts should be set at least 150 mm below the bed of the stream. This will allow for sedimentation to occur within the culvert, thus providing a more natural environment for aquatic fauna and fish movement.

**Culvert Height**

A minimum box culvert height of 1,200 mm is recommended for low level culvert crossings on Class 2 streams as described in Table 1.3. A lesser height of 900 mm would be acceptable for Class 3 and 4 streams.

This is based on providing at least 600 mm airspace above the typical base flow in the stream to ensure reasonable light within the culvert to encourage fish passage, as well as capacity for minor flows. The recommended height is calculated as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream depth at normal low flow</td>
<td>300</td>
</tr>
<tr>
<td>Airspace</td>
<td>600</td>
</tr>
<tr>
<td>Depth invert below stream bed</td>
<td>150</td>
</tr>
<tr>
<td>Culvert height</td>
<td>1050 (say 1200)</td>
</tr>
</tbody>
</table>

**Hydraulic Assessment**

A hydraulic assessment is necessary for all culvert arrangements to check if the works would impact on neighbouring properties, induce erosion damage to the track or stream and whether velocities through the culverts are acceptable.

**Crossing Stabilisation**

The crossing must be stabilised to prevent failure during overtopping. As well as loss of access for the owner and the cost of reinstatement, a failure would mean significant sediment input to the stream.

Riprap is required on the downstream batter, bank crest and around the culvert inlet for protection. Rock size should be determined based on the critical flow over the crest before the structure becomes drowned, after which the velocities over the structure are lower and less critical. The following criteria applies:

- The earth embankment should be compacted to achieve 95% maximum dry density.
- The riprap specification on the downstream batter should be for a well graded hard quarried rock. Thickness of the rip rap should be 1.5 to 2 times the rock size. In general a minimum $D_{50}$ of 300 mm would apply. Alternative measures will need to be used where large rock is unavailable. ($D_{50}$ is the median rip rap diameter of the rock mix.)
- The downstream batter to have a maximum slope of 1(v):4(h).
- The crest to be covered with 20 mm to 150 mm diameter rock mix, 200 mm thick (compacted thickness), or sealed with bitumen or concrete.

The upstream batter should not be steeper than 1(v):2(h). Beaching or riprap is not always necessary on the upstream batter, but is recommended as good practice if afflux exceeds 300 mm at the point of overtopping. Establishment of a grass cover is desirable to stabilise the batter surface.
Bed and Batter Protection
The need for bed and bank protection depends on the materials at the site.

Rock riprap is required on the bed except where the stream bed is rock or consists of stones 150 mm diameter or greater. Rock riprap is also required on the stream banks to protect them during flows over the structure.

For low level crossings, riprap is required on bed and banks to at least 1 metre above track level, and extending at least 4 times the culvert height downstream of the culvert.

The medium diameter ($D_{50}$) of the riprap can be determined in accordance with SCRC (1991). A range of flows needs to be considered to determine the critical flow condition that leads to the largest size rip rap. The quarried rock shall have a minimum $D_{50}$ of 150 mm nominal size.

Rock Rip Rap Gradation Size:

<table>
<thead>
<tr>
<th>Spherical Diameter</th>
<th>% of rip rap smaller (i.e. % of rip rap passing through sieve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 – 2.0 $D_{50}$</td>
<td>100%</td>
</tr>
<tr>
<td>$D_{50}$</td>
<td>50%</td>
</tr>
<tr>
<td>0.3 – 0.4 $D_{50}$</td>
<td>10-20%</td>
</tr>
</tbody>
</table>

$D_{50} = \text{median rock rip rap size}$

That is: there should be no rock greater than 2 x $D_{50}$. 50% of the rock should be evenly graded from $D_{50}$ to 2 x $D_{50}$. 40% of the rock should be evenly graded from $D_{50}$ to 0.3 – 0.4 $D_{50}$. And the final 10% of rock will be less than 0.3 $D_{50}$ to fill the gaps.

Local Drainage
In the case of high level crossings, including dairy crossings, local drainage from the site and access tracks should be directed to sedimentation basins or grassed filter zones to trap sediments and nutrients rather than discharging directly to the stream. Where outfall directly to the waterway cannot be avoided, piped or rock chute outfalls may be needed. These should be designed in accordance with CMA guidelines for “Drainage Outlets” (notes on “Drainage Outlets” are available from the CMA office).

The culvert surface should be graded to sedimentation basins or grassed filter zones to trap sediments at each end of the bridge, with the return flow either overland or by pipe to the stream.
On dairy farms, the culvert surface and tracks are to be graded away from the waterway to a drainage recycling system to prevent animal wastes directly discharging to the waterway. There should be no direct connection of any dairy track to a stream or connected drain.

Local drainage from low level crossings should be directed to grassed filter zones to trap sediments and nutrients.

Batters of the access track excavated into the stream bank should be on a slope of 1(v):2(h) or flatter to facilitate the establishment of a grass cover. Table drains at the toe of the batter should be stabilised with graded rock.

**Alignment and Location**
The culverts should be laid parallel to the main stream flow path. Low level crossings must be aligned so the track is perpendicular to the main stream flow path. The location of culverts should be sited on a stable reach of the stream.

**Fish Passage**
The type of structure recommended to provide fish passage depends on the characteristics of the stream. The minimum preferred structure type is shown in **Table 1.3** and based on a report by NSW Fisheries (1999). This methodology can be used for access crossings and other in-stream structures such as drop structures, to quickly determine whether provision for fish passage is required.

Pipe culverts are generally not recommended for natural streams as they inhibit the passage of fish. (NSW Fisheries, 1999). This is due to the narrow effective bed width and greater flow concentration compared with box culverts. Some fish species are also reluctant to enter the darkened environment resulting from the use of long lengths of pipe and thereby creating a barrier to fish movement. Pipe culvert crossings should only be allowed on Class 3 and 4 waterways (**Table 1.3**).

**Table 1.3 Minimum Preferred Structures for Fish Passage**

<table>
<thead>
<tr>
<th>Classification</th>
<th>Stream Characteristics</th>
<th>Minimum Preferred Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1 - Major fish habitat</td>
<td>Large named permanently flowing stream. Aquatic vegetation present. Known fish habitat.</td>
<td>Bridge</td>
</tr>
<tr>
<td>Class 2 – Moderate fish habitat</td>
<td>Smaller named permanently or intermittent flowing stream. Aquatic vegetation present. Known fish habitat.</td>
<td>Large box culvert or bridge</td>
</tr>
<tr>
<td>Class 3 – Minimal fish habitat</td>
<td>Named or unnamed watercourse with intermittent flow.</td>
<td>Box / pipe culverts</td>
</tr>
<tr>
<td>Class 4 – Unlikely fish habitat</td>
<td>Named or unnamed stream with flow during rain events only.</td>
<td>Ford or culverts</td>
</tr>
</tbody>
</table>