Fungi of the Southwest Slopes & Upper Murray Region of NSW

Fungi can be seen everywhere, traveling underneath the ground. With their countless forms, they comprise the invisible and short-lived hydrosphere, fungi are a fascinating aspect of both safety and aesthetics. The Southwest Slopes and Upper Murray Region of NSW is a large diversity of fungi available. The variety of fungi and their unique qualities make them inseparable from the natural environment.

The fungi illustrated in this guide represent a selection of the most regularly seen forms. They are described in a brief and easy-to-read way, with an emphasis on their fruitbodies, from the top to the bottom. Botanists also classify fungi, so there are many variations in the names that are visible to the naked eye. The major field characteristics are illustrated in the accompanying diagrams.

Many fungi can be identified using field characteristics – i.e. features of the fruitbody. This is the most accurate way to identify fungi further with identifications. A selection of field guides and websites is listed below to assist you further with identifications.

Identifying Fungi

Many fungi can be identified using field characteristics – i.e. features of the fruitbody that are visible to the naked eye. The major field characteristics are illustrated in the accompanying diagram. Other species require examination of microscopic features for accurate identification.

Fruitbody Forms

The most familiar fungus fruitbodies are likely to be the Agarics – those that typically have an umbrella-like form and lamellae (thin plates also called gills) beneath the cap, commonly referred to as mushrooms. However, fungi appear in a great variety of forms, with many species varying greatly in colour and form. The most accurate way to identify fungi is to examine the fruitbody, i.e. features of the fruitbody that provide key elements of the diagnosis. A selection of field guides and websites is listed below to assist you further with identifications.

Edible & Poisonous Fungi

Fungi are often found growing on the ground, but their power to identify poisons is not reliable to identify fungi accurately. Hawaii's fungi are not included in this book. Many species of mushrooms can be poisonous, but a few are edible. This is the most accurate way to identify fungi with identifications. A selection of field guides and websites is listed below to assist you further with identifications.

Websites and Contacts of Interest

- Murray Local Land Services murray.lls.nsw.gov.au 1300 795 299
- NSW Poisons Information Centre poisonsinfo.nsw.gov.au 131126
- Holbrook Landcare Network holbrooklandcare.org.au 02 6036 3181

Acknowledgements

- Photography: Laurence Gartrell, Nicole Product, Olivia Product, Alice Curtin and David Curtin.
- Special thanks to Tom May, Paul George and M.L. Malloch for assistance in selecting fungi for the project.

Selected Field Guides That Include NSW Fungi

- Fungi of the Southwest Slopes & Upper Murray Region
- A Field Guide to Australian Fungi
- Australian Fungi Illustrated
- Fungimap

©Design - Colourfield Design 2016

Information Centre on 13 11 26.
the event of a poisoning or suspected poisoning contact the NSW Poisons Information Centre.
Fungi with Pores

- Fistulinella mollis
- Rhubarb Bolete
- Pores / Tooth Fungi / Corals / Earthstars
- Fistulina hepatica
- Beefsteak Fungus
- Rigidoporus lateus
- Weeping Polypore
- Phellodon niger
- Black Tooth
- CORAL S
- Collared Earthstar
- EARTHSTAR S
- Puffballs / Puffballs / Jellies / Truffles / Clubs
- Geastrum fornicatum
- Ramaria aff. formosa
- Collared Earthstar
- Earthball
- Heterotextus pezizaformis
- Podoserpula pusio
- CHANTARELLE S
- Pagoda Fungus
- Horn of Plenty
- Pisolithus sp.
- PUFFBALL M
- PUFFBALL S
- TREMELLA FUCIFORMIS
- Cordyceps robertsii
- Zelleromyces sp.
- TRUFFLE S
- CLUB P

Starchy Trophic Modes
Fungi can be divided into three groups based on how they obtain their nutrition:
1. Saprobic or saprotrophic (saprophytic), by the following symbols:
 - These fungi decompose dead organic material. They can break down lignin, cellulose, and chitin and are responsible for the decomposition of dead plant and animal matter. They are important in the nutrient cycle of ecosystems, recycling nutrients back into the soil for new plant growth.
2. Parasitic (parasitic), by the following symbols:
 - These fungi attack living or dead plants and animals, causing disease and death. They can cause significant damage to crops and livestock.
3. Mycelial threads
 - Fungi form mycelium, which is a network of threads that absorb nutrients from the substrate. Mycelium is the vegetative part of the fungus, and it is responsible for growth, reproduction, and nutrient absorption.

Sticky substrate where each species is usually found is indicated with a colour code:

- Black: living or dead wood, leaf litter, native animal scats, moss beds, invertebrates as host
- Red: soil, rocks, dung, dung beetles
- Green: leaf litter, moss beds, lichens, sand dunes, rocks
- Yellow: leaves, fruits, soil, dung
- Brown: leaf litter, moss beds, lichens, sand dunes, rocks

Fungi can be divided into three groups based on how they obtain their nutrition:

- Saprobic or saprotrophic (saprophytic), by the following symbols:
- Parasitic (parasitic), by the following symbols:
- Mycelial threads

Another symbiosis is that of lichens which is a relationship between a fungus and an alga or cyanobacterium. Lichens are considered to be dual organisms, with one part being a fungus and the other being an alga or cyanobacterium.

Fungi can be divided into three groups based on how they obtain their nutrition:

- Saprobic or saprotrophic (saprophytic), by the following symbols:
- Parasitic (parasitic), by the following symbols:
- Mycelial threads

Another symbiosis is that of lichens which is a relationship between a fungus and an alga or cyanobacterium. Lichens are considered to be dual organisms, with one part being a fungus and the other being an alga or cyanobacterium.

Fungi can be divided into three groups based on how they obtain their nutrition:

- Saprobic or saprotrophic (saprophytic), by the following symbols:
- Parasitic (parasitic), by the following symbols:
- Mycelial threads

Another symbiosis is that of lichens which is a relationship between a fungus and an alga or cyanobacterium. Lichens are considered to be dual organisms, with one part being a fungus and the other being an alga or cyanobacterium.