Ashley Wheaton Dookie Campus, The University of Melbourne

Ian Goodwin and Mark O'Connell Tatura Centre, Department of Primary Industries

Matching water application to water use to maximize production and quality of Pink Lady apple in the Goulburn Valley

Centre for Water and Landscape Managemer

Background

Catchment issues

 Horticultural industries have great potential for export growth

- Compared to other agricultural industries, horticulture has superior water use efficiency
- Recent research shown further water savings possible (30%)

Benefits of improved water management in orchards

- Better match water application to water use
- Efficiently achieve yield targets
- Avoid fruit quality losses

Project aims

- Tree water use (sap flow sensors) is a function of canopy interception of photosynthetically active radiation (PAR)
- 2. Assess sap flow, trunk shrinkage and canopy temperature as tools to measure water stress for irrigation scheduling

Aim 1

$\mathbf{ET}_{\mathbf{C}} = \mathbf{K}_{\mathbf{C}} \mathbf{ET}_{\mathbf{0}} (FAO 56)$

- ET_c = crop evapotranspiration (orchard water use)
- ET_o is reference crop evapotranspiration (water use of irrigated grass)

K_c is the crop coefficient (convert grass to crop water use)

Canopy interception of PAR (previous study)

Aim 1

- Effective area of shade (EAS) is a good measure of canopy intercepted PAR
- EAS is calculated from estimates of area of shade cast by the tree on the soil surface at solar noon and 3.5 hours each side of solar noon
- For peach

adjusted Kc = 1.05 EAS (Goodwin and O'Connell 2004)

Plant based tools can indicate onset of water stress

LVDT - Trunk diameter

Sap flow

IR Temperature - Canopy

- Micro-technology in orchards for plant water stress
 - LVDT
 - Sap flow
 - IR Temperature
- Traditional plant based indicators of water stress
 - Effective area of shade
 - Shoot growth
 - Fruit growth
 - Midday stem water potential
 - Midday leaf conductance

Tree water stress (trunk shrinkage)

Tree water use (sap flow)

Aim 2

Irrigation Experiment

Mt Major Orchard Dookie Estate

Pink Lady Apple

Micro-jet M26 rootstock Planted 1996 4.5 x 2.5 m Central Leader 5 Irrigation treatments (47% ... 177% ETc) 3 Replicates

Irrigation Treatments

47%	ETc	Deficit	Water stress	2.63 ML/ha
67%	ETc	Deficit	Water stress	3.75 ML/ha
100%	ETc	Control*	No Water Stress	5.6 ML/ha
137%	ETc	Well watered	No Water Stress	7.7 ML/ha
177%	ETc	Well watered	No Water Stress	9.9 ML/ha

* Control is predicted and represents approx. 80% current industry practice (7ML/ha)

Shoot growth

Fruit growth

Water potential

600 **Leaf conductance (mmol/m/sec)** 005 007 100 100 —□— 0.47ETc -----0.67ETc ► 1.00ETc _____1.37ETc --**■**-- 1.77ETc 0 30 60 90 180 210 0 120 150 Days after 1st October 2004

Leaf conductance

Improved water management in orchards

- More appropriate crop coefficients based on canopy cover
- Increase water use efficiency
- Reduced leakage
- Improved capability to use RDI
- Demonstrated best-practice water management
- Re-allocation of water for other developments and/or environment

I look forward to presenting the full spectrum of results at next years conference.